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Abstract. We present a simple scheme for implementing an atomic phase gate using two degrees of freedom
for each atom and discuss its realization with cold rubidium atoms on atom chips. We investigate the
performance of this collisional phase gate and show that gate operations with high fidelity can be realized
in magnetic traps that are currently available on atom chips.

PACS. 03.67.Lx Quantum computation – 34.90.+q Other topics in atomic and molecular collision pro-
cesses and interactions – 52.55.-s Magnetic confinement and equilibrium

1 Introduction

Neutral atoms are promising candidates for the phys-
ical implementation of quantum information process-
ing (QIP). The weak interaction of neutral atoms with
their environment leads to long coherence times, and ma-
ture experimental techniques from quantum optics and
atomic physics allow to prepare and manipulate atomic
quantum systems.

In recent years new tools for the precise control and
manipulation of neutral atoms were developed, based on
the adaption of microfabrication techniques to atom op-
tics and the implementation of the atom chip [1]. Such
atom chips apply the advantages of micro-fabrication tech-
nology from micro-electronics and micro-optics to atomic
physics with the goal to build integrated devices for quan-
tum manipulation of ultra-cold atomic samples and a col-
lection of single atoms.

In the quest for implementations of QIP with neutral
atoms, atom chips are promising candidates for a num-
ber of reasons: (i) large electric and magnetic field gra-
dients and field curvatures near microscopic conductors
lead to tight confinement and large energy level spacings
for the trapped atoms (trap frequencies in the range of
hundreds of kHz were implemented [2]). (ii) Very high
resolution of the potentials (sub-µm) can be implemented
when going close to the surface (µm distance). This is im-
portant for QIP proposals in which the short distances
(order of 1 µm) between individual trapping sites is re-
quired to achieve sizable qubit coupling and fast gate op-
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erations. (iii) Nanofabrication techniques on surfaces facil-
itate accurate and robust placement of structures with size
limit well below 100 nm. This enables the realization of
nearly arbitrary potential configurations. (iv) Integration
of new components, for example micro-optics and micro-
cavities for preparation, manipulation, and detection of
qubits are possible. (v) Last, but not least, nanofabrica-
tion schemes are particularly well suited for production of
multiple structures.

In this paper we discuss in more detail how to imple-
ment a quantum logic operation with the toolbox of atom
chips. We will make thereby use of two different degrees of
freedom, each of them having two levels, for each qubit.
We use the first degree of freedom to store information
and the second one to process it. This helps to take ad-
vantage of the best features of both degrees of freedom.
One pair of states (the hyperfine levels of a trapped atom)
will be used to store the qubit, and the quantum gate
operations will make use of two vibrational levels of the
atom trap as qubit states and the collisions that realize
the phase gate will occur in the same internal states, which
has the advantage of reducing unwanted collisional losses.
Our scheme therefore combines the important feature of
long lived coherence of the hyperfine states with the phase
gate operation with vibrational states via collisions.

We shall first discuss the implementations of qubits on
atom chips, and then describe new schemes for implement-
ing a phase gate for cold neutral atoms on atom chips. The
results of a realistic calculation of the gate performance us-
ing typical state of the art atom chip parameters is given
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in Section 5. Section 6 briefly illustrates future directions
of QIP on atom chips.

2 The qubit

We shall discuss here only implementations where each
qubit is written into a single atom. There are two distinct
ways to encode a qubit into a single neutral (Rb) atom on
atom chips:

– the qubit is encoded into a pair of long-lived internal
states such as two different hyperfine ground states of
an atom. The qubit states have to be trappable on the
atom chip, and show long coherence times.
To achieve long coherence times, it is advisable to use
atomic states where the energy difference is to first
order independent of external fields (clock states). In
free space these would be the |F = 2, mF = 0〉 and
|F = 1, mF = 0〉 states used in atomic clocks, which
show only quadratic Zeeman and Stark shifts. On the
atom chip one can achieve the same common mode re-
jection of external field noise using the hyperfine levels
|F = 2, mF = 1〉 and |F = 1, mF = −1〉 of the 5S1/2

ground state of 87Rb which have the same magnetic
moment at a magic magnetic field of BM = 3.23 G [3].
Operating a trap at this offset field, the energy dif-
ference between these two trappable states shows only
a quadratic dependence on external field fluctuations
like the mF = 0 clock states at zero field.
Single-qubit operations are induced as transitions be-
tween the hyperfine states of the atoms. These can be
driven by external fields, using radiofrequency (RF)
and/or microwave (MW) pulses or optical Raman
transitions. As an example we mention the atom chip
experiment in Munich [4] which demonstrated the
very long coherence times in a magnetic atom chip
trap for the special clock states |F = 2, mF = 1〉 and
|F = 1, mF = −1〉 at a trapping magnetic field near
the value BM ;

– the qubit is encoded in external, motional states of the
atom in a tight trap. These motional states can be ei-
ther the ground and an excited state in a trap, or the
left and right states of a double well. In such a real-
ization the atoms are in the same internal state, and
therefore automatically isolated from external fluctua-
tions. Single-qubit operations are then Rabi rotations
between the motional states, and can be seen like
trapped atom interferometers.

To implement a quantum bit on an atom chip, the qubit
states have to be trappable, and show long coherence
times. That is we require a common mode rejection of ex-
ternal field noise (clock states). Atoms trapped in different
motional states are easier to state-selectively manipulate,
but much less is known on external state decoherence, and
how to prevent it.

3 New schemes for a phase gate

The phase gate is a two-qubit quantum gate described by
the evolution operator [5]

H(φ) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ


 .

Several different implementations of this universal gate
have been proposed. In particular, schemes where inter-
nal electronic states of atoms are the logic states |0〉 and
|1〉 and state-dependent atomic collisions generate appro-
priate values of the phase φ (usually π) have been dis-
cussed [6–9]. In these cases the correct performance of the
phase gate requires that at some time τ all vibrational
states have a complete revival up to a phase.

Our schemes use two different degrees of freedom, each
of them having two levels, for each qubit. We use the first
degree of freedom to store information and the second one
to process it. The “storage” qubit levels are denoted as |0〉
and |1〉, whereas the “operation” qubit levels are denoted
as |g〉 and |e〉. Such a scheme helps to take advantage of
the best features of both degrees of freedom.

In principle, the qubit operations we shall describe can
be performed directly on the storage states, so our schemes
might appear as an unnecessary complication.

In the specific scheme presented here, the storage qubit
is encoded in the clock states |0〉 ≡ |F = 2, mF = 1〉 and
|1〉 ≡ |F = 1, mF = −1〉 of the 5S1/2 ground state of 87Rb.
Quantum coherences between these two states have been
demonstrated with decoherence times exceeding 1 s [4]
when the value of the trapping magnetic field is set to the
magic value BM . However, these clock qubit states are
trapped in identical trapping potentials. Direct realiza-
tions of the phase gate via internal state-dependent time-
varying potentials like the one described in [6] are hence
not feasible. For this reason, we choose two vibrational
states as operation qubit states as suggested in [8,9] in
order to realize a collisional phase gate that does not rely
on the internal states.

This approach combines the important feature of long
coherence time of the hyperfine states with the phase gate
operation with vibrational states via collisions. The stor-
age states are the hyperfine levels |F = 2, mF = 1〉 and
|F = 1, mF = −1〉, the operation states |g〉 and |e〉 are the
ground and first excited states of the atomic vibrations, re-
spectively. The MW-RF two-photon transitions described
in [4] can be used for single qubit operations on the stor-
age states. For a two-qubit phase gate, our schemes can
be summarized as follows: the logic state is encoded and
stored in the hyperfine states; when two-qubit gate op-
eration must be performed, the logic state is transferred
into the vibrational states and the gate operation takes
place via collisions; at the end of the operation, the logic
state of the vibrations is transferred back into the internal
hyperfine states.

There are two different ways to realize this idea. We
can (a) duplicate the logic state of the storage levels in
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the vibrational levels or (b) swap the logic states of the
two degrees of freedom.

The duplication scheme (a) for the phase gate is sum-
marized by the map

|0g〉 → |0g〉 (1)
|0e〉 → |0e〉 (2)
|1g〉 → |1e〉 (3)
|1e〉 → |1g〉 (4)

whereas the swap scheme (b) is summarized by

|0g〉 → |0g〉 (5)
|0e〉 → |0e〉 (6)
|0e〉 → |1g〉 (7)
|1g〉 → |0e〉. (8)

Let’s assume that information is initially encoded in two
storage levels of two qubits,

|ϕ0〉 = (a|00〉 + b|01〉 + c|10〉 + d|11〉) ⊗ |gg〉 (9)

which may be already entangled. The duplication scheme
takes place in three steps: (i) we selectively excite the (vi-
brational) operation state,

|ϕ1〉 = a|0g, 0g〉 + b|0g, 1e〉 + c|1e, 0g〉 + d|1e, 1e〉 (10)

(ii) only the two |e〉 states collide, acquiring a dynamical
phase equal to π

|ϕ2〉 = a|0g, 0g〉 + b|0g, 1e〉 + c|1e, 0g〉 − d|1e, 1e〉 (11)

like in [6–9], where only the two excited (vibrational or
internal) states get a collisional phase on top of the kine-
matic phase; finally (iii) we de-excite (selectively) the op-
eration state:

|ϕ3〉 = (a|00〉 + b|01〉 + c|10〉 − d|11〉) ⊗ |gg〉. (12)

In this way the result of the phase gate operation on the
operation states is transfered to the storage states. The
second alternative scheme swaps the storage and operation
states for the phase gate performance. Starting from the
initial state equation (9), again three steps are required for
the gate operation: (i) we selectively excite the operation
state and de-excite the storage states

|ϕ′
1〉 = |00〉 ⊗ (a|gg〉 + b|ge〉 + c|eg〉 + d|ee〉) (13)

i.e, we swap their logic states; then (ii) the operation states
get a dynamical phase equal to π

|ϕ′
2〉 = |00〉 ⊗ (a|gg〉 + b|ge〉 + c|eg〉 − d|ee〉) (14)

through collisions as in the duplication scheme; finally (iii)
we swap again the storage and operation states

|ϕ′
3〉 = (a|00〉 + b|01〉 + c|10〉 − d|11〉) ⊗ |gg〉. (15)

These schemes are not restricted to internal and external
degrees of freedom of cold atoms, but can be applied to
any system with at least two degrees of freedom.

The duplication scheme does not modify the storage
states. During the phase gate operation (Eq. (11)), the
storage and the operation states are entangled. In the swap
scheme, on the other hand, the storage states are modified
but the two (storage and operation) degrees of freedom
remain always separable.

4 Excitations of vibrations of hyperfine states
of neutral atoms

The two schemes for a phase gate described in the previous
section require a selective excitation of vibrational states
when implemented with cold atoms. We specialize our dis-
cussion to 87Rb atoms, having mass M = 1.44×10−25 kg,
confined in traps of frequency νt = 10 kHz and higher.
Two-photon Raman processes have already been used for
sideband excitations of trapped ions in the Lamb-Dicke
regime [10] and are natural candidates also to excite vi-
brational states of neutral trapped atoms. So we examine
the transitions from an initial state |i〉 to a final state
|f〉 driven by two external radiation fields through an in-
termediate state |b〉 which is never populated. From the
Hamiltonian of a three-level atom interacting with two
radiation fields an effective two-level Hamiltonian

Heff = �ωi|i〉〈i|+�ωf |f〉〈f |+�Ω0

2
[
eikx|f〉〈i| + h.c.

]
(16)

is obtained, where k1 − k2 < k < k1 + k2 and k1 and
k2 are the wave vectors of the two driving fields, Ω0 =
Ω1Ω2/(2∆) is the effective Rabi frequency, ∆ is the de-
tuning of the two fields from the transition frequencies ωbi,
ωbf . The factors Ω1, Ω2 are the Rabi frequencies of the
transitions |i〉 ↔ |b〉 and |f〉 ↔ |b〉. The effective Hamilto-
nian (16) is obtained under the hypotheses Ω1, Ω2 � ∆.
The atomic motion is quantized when we write

kx = η(a† + a) (17)

where a and a† are the usual annihilation and creation
operators of the harmonic oscillator and

η ≡ �k√
2M�ωt

(18)

is the Lamb-Dicke parameter.
The two-photon process can be obtained either

through MW and RF transitions involving other hyperfine
levels of the 5S ground state or through optical transitions
involving a hyperfine level of the 5P excited state. Mi-
crowave transitions between the 5S hyperfine states occur
at the frequency νhf 	 6.835 GHz, so ηMW is of the order
of 10−5, well within the Lamb-Dicke limit. The effective
Hamiltonian equation (16) can then be approximated by
a Jaynes-Cummings Hamiltonian

Heff,JC =
∑

n

�ωn|ϕn〉〈ϕn| + �ωi|i〉〈i| + �ωf |f〉〈f |

+
�Ω

2


a† ∑

j

|f, ϕj〉〈i, ϕj | + h.c.


 (19)
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where the rotating wave approximation has been used and
the eigenstates |ϕj〉, with energies �ωj , of the atomic mo-
tion have been included [11]. In equation (19) the sideband
Rabi frequency Ω = Ω0ηMW � Ω0 replaces the effective
Rabi frequency Ω0. Since the effective Rabi frequency Ω0

can easily be increased up to Ω0 	 2π × 100 kHz [12], the
sideband Rabi frequency has an upper bound of the order
of 2π Hz. Microwave transitions would then occur rather
slowly.

Optical transitions employing the 5P1/2 or 5P3/2 level
as intermediate state have wavelengths of the order of
λopt 	 800 nm. The upper bound of the Lamb-Dicke pa-
rameter is ηopt 	 1. The Lamb-Dicke regime necessary for
sideband excitation requires either the choice of appropri-
ate directions of the the wave vectors k1 and k2 of the
two radiation fields or trapping frequencies above 105 Hz.
The ongoing miniaturizations of atom chip structures have
reached this range of frequencies [2].

In the duplication scheme only the vibrational state
must be modified. The desired transition is |1g〉 ↔ |1e〉,
the energy difference of which gives the sideband exci-
tation condition k1 − k2 = 2.09 × 10−6cm−1. Microwave
Raman processes where the 5S(F = 2, mF = −2) ground
state is the intermediate state would ensure selectivity,
but the Rabi oscillations would be slow, as mentioned be-
fore. On the other hand, the optical transitions do not ful-
fill the selectivity requirement, since the lasers that drive
the transitions |1g〉 ↔ |1e〉 would also drive the undesired
transitions |0g〉 ↔ |0e〉 (only the detuning ∆ of the two
transitions would be slightly different). The duplication
schemes presents severe drawbacks for the system we are
considering.

In the swap scheme both the internal and the vibra-
tional states are changed, so the desired sideband exci-
tation |1g〉 ↔ |0e〉 requires k1 − k2 = 2π(νt + νhf)/c 	
2πνhf/c = 1.43 cm−1. This condition differs from the con-
dition k1 − k2 = 2π(νhf − νt)/c of the undesired sideband
excitation |0g〉 ↔ |1e〉 by the small amount 4πνt/c, so the
radiation linewidth must be tight enough to prevent the
undesired transition |0g〉 ↔ |1e〉. This condition is reached
experimentally by standard techniques which allow to re-
duce the linewidths appropriately. Specific pulse shaping
techniques can be used to ensure an optimal probability
of the correct transition even for short pulses. Moreover,
the logic states |0〉 and |1〉 can be equivalently encoded in
each of the two hyperfine clock states. The swap scheme
with optical transitions suits better neutral 87Rb atoms
trapped on atom chips than the duplication scheme.

5 Magnetic traps on atom chips and phase
gate operation

To implement a phase gate between two qubit sites on
an atom chip we consider a very simple double well con-
figuration. The two qubits are trapped in the two wells
respectively, and they can interact via the barrier.

In this paper we consider the simplest of these geome-
tries for the quantum gate implementation in magnetic

Fig. 1. Wire configurations to create two qubit traps on an
atom chip, capable to achieve a gate operation. Tight trans-
verse confinement is created by the current I in the central
trapping wire and the transverse component of the bias field.
The qubit traps are then created by two crossing wires carry-
ing a smaller current αI . The angle of the bias magnetic field
is adjusted in such a way, as to achieve a magnetic offset fields
at the qubit trap locations equal to the magic field required
for trapped clock states (3.23 G for Rb-87). (a) The H con-
figuration creates a double well potential to hold the qubits.
(b) Adding a third wire to the middle allows for flexible control
of the potential barrier height, and therefore more control over
the qubit coupling.

micro traps on an atom chip, the H configuration [13] (see
Fig. 1). Here one wire along the X-axis (X wire) carries
a current I and two parallel wires along the Y -axis (left
and right wire), separated by a distance a, carry a cur-
rent αI; a bias magnetic field Bb parallel to the surface
is employed. Appropriate values of currents and bias field
create the magnetic trapping potentials for neutral atoms.
In the approximation of infinitely long and thin wires, with
negligible separation along the Z-axis, the X wire and the
bias field produce a trapping field

BQ(x, y, z) =
(

Bx
b , By

b − κ I z

z2 + y2
,

κ I y

z2 + y2

)
, (20)

and the two parallel wires produce the localization fields

Bw
L(x, y, z) =

κ α I

z2 + (x − a/2)2
(
z, 0,

a

2
− x

)

Bw
R(x, y, z) =

κ α I

z2 + (x + a/2)2
(
z, 0,−a

2
− x

)
(21)

where κ = µ0/(2π) and µ0 is the vacuum permeability.
By using realistic parameters that have been tested in

current atom chips and setting a = 1.5 µm, I = 29.9 mA,
α = 0.093, Bb

x = −9.91 G, and Bb
y = 50 G, we find a

trapping potential for two atoms (Fig. 2), with two minima
(x0A, y0A) and (x0B , y0B) lying on an axis X ′ rotated by
an angle β = arctan(x0A/y0A) 	 0.063 with respect to
the X-axis. The magnetic field in the two minima has the
desired value BM = 3.23 G. The trap frequencies in the
two minima are ωx′/(2π) 	 11.96 kHz along the direction
of longitudinal confinement, ωy′/(2π) 	 211.41 kHz, and
ωz/(2π) 	 213.24 kHz along the direction of transverse
confinement. Atoms in the transverse ground state will
perform one-dimensional (1D) dynamics along the X ′-axis
only. The 1D potential is shown in Figure 2. The distance
of the two minima from the chip surface is z0 	 1.19 µm;
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Fig. 2. 1D magnetic trapping potential for 87Rb in the hyper-
fine states |F = 1, mF = −1〉, |F = 2, mF = 1〉. The distance
is measured in µm; the trapping potential is given in units of
�ωx′ and shifted in order to vanish at the minima. The ground
(dashed) and first excited (dash-dotted) vibrational levels in
the left and right wells are shown. Note that these states are
linear combinations of the eigenstates of the trapping potential.

the separation of the two minima is about 0.74 µm. The
variation of the magnetic field along the trapping potential
is small: at the maximum height of the central barrier we
have BMAX = 3.26 G.

We have used this static magnetic potential to study
the performance of a collisional phase gate. Steps (i) and
(iii) of the swap scheme require an optical two-photon
transition, as already discussed in Section 4. The prob-
ability to populate the second excited vibrational level
P20 = |〈ϕ2|eiη(a+a†)|ϕ0〉|2 is about 3.8% of the probabil-
ity P10 = |〈ϕ1|eiη(a+a†)|ϕ0〉|2 of sideband excitation of the
first excited vibrational level, thus affecting the fidelity
of the operation. In our simple scheme, the value 3.8%
results from the anharmonicity of the longitudinal trap-
ping potential, and represents a lower limit that cannot
be reduced with a further decrease of the Lamb-Dicke pa-
rameter. In the Lamb-Dicke regime the ratio of the two
probabilities

P20/P10 	 |η〈ϕ2|(a + a†)|ϕ0〉|2
|η〈ϕ1|(a + a†)|ϕ0〉|2 (22)

becomes independent of the Lamb-Dicke parameter. Nev-
ertheless the probability of this undesired transition can
be further decreased with an optimal modulation of the
trapping potential in more complex schemes that go be-
yond the simple gate investigated here. For example, if
one starts with a high barrier separating the two wells,
the vibrational states under considerations are much bet-
ter approximated by harmonic oscillator states |ϕHO

j 〉
and thus the excitation of the higher vibrational states
in the Lamb-Dicke regime is essentially suppressed since
〈ϕHO

j |a†|ϕHO
0 〉 = δj1.

The realization of step (ii) of the swap scheme in the
trapping potential in Figure 2 can also be considered as a
simplified version of the phase gate proposed in [9]. The
ground and first excited vibrational states of each poten-
tial well are the logic states. These states are linear su-
perpositions of eigenstates of the trapping potential; free

Fig. 3. Revivals of the vibrational states |Ψge〉 (solid line) and
|Ψee〉 (dashed line) in a static magnetic double well potential
during the phase gate operation.

atoms would tunnel from one well to the other. The pres-
ence of one atom in each well and their mutual interaction
when they collide modifies significantly the dynamics. The
choice of the trapping potential of Figure 2 combines two
opposite requirements: the ground states must be deep
in the well to avoid tunneling during the gate operation,
while the excited states have to interact in order to de-
velop the correct value of the phase φ.

We have already discussed how to transfer the logic
states from the storage qubit to the operation qubit. We
examine now the gate operation performed with the vi-
brational states. Initially one atom sits in each well and
the phase gate operation is performed via tunneling of
the first excited states of the two atoms. A correct op-
eration of the phase gate requires a complete revival (up
to a phase) of each of the initial states |Ψgg〉, |Ψge〉, |Ψeg〉
(this state is symmetric of |Ψge〉 so we shall neglect it)
and |Ψee〉 at some later time τ , as well as the fulfillment
of the condition φ = φee + φgg − 2φge = π (φab is the
phase of the state |Ψab〉) at the same time τ . We solve the
two-particle Schrödinger equation numerically in 1D with
the split operator technique [14], replacing the scattering
length as of the hyperfine state |F = 2, mF = 1〉 of 87Rb
with an effective scattering length a⊥ that takes into ac-
count the transverse confinement [6]. The interaction be-
tween the atoms is described by a contact potential, like
in [6,7]. After an operation time τ 	 16.25 ms, the ini-
tial states |Ψge(0)〉 and |Ψee(0)〉 have an almost complete
revival, with fidelities Fge = |〈Ψge(0)|Ψge(τ)〉|2 > 0.99,
Fee = |〈Ψee(0)|Ψee(τ)〉|2 > 0.99 (see Fig. 3); moreover,
the state |Ψgg〉 is stationary on this time scale. We have
also evaluated the gate phase accumulated during the gate
operation, and the final result is φ 	 0.99π (see Fig. 4).

The populations of undesired states |Φge〉 and |Φee〉,
where the atoms are in the ground and first excited vi-
brational level of the same well, must be negligible. Our
calculations confirm that these populations remain small
(see Fig. 5). These results also show that the effects of tun-
neling, that would increase the populations of the unde-
sired states in the absence of interaction, are significantly
reduced, as already stressed in [9].
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Fig. 4. Dynamics of the phase φ during the gate operation.

Fig. 5. Populations of vibrational states |Φge〉 (upper figure)
and |Φee〉 (lower figure) of atoms sitting in the same potential
well.

These results are encouraging, since they are obtained
with realistic parameters and without introducing approx-
imations for numerical convenience. The use of the clock
states |F = 1, mF = −1〉 and |F = 2, mF = 1〉 greatly re-
duces the impact of fluctuations of the magnetic field due
to current fluctuations, that would spoil the gate perfor-
mance. Moreover, the use of a static trapping potential
has the advantage of avoiding the necessity of accurate
control over the relevant parameters (currents, magnetic
fields, etc.) as requested by dynamic schemes. More com-
plex approaches might further increase gate performances
and reduce the operation time. We briefly discuss them in
the next section.

6 Future perspectives

Atom chips provide the set-up for a rich variety of traps
for neutral atoms. In this paper we have discussed the
simplest static magnetic potential for implementing quan-
tum gates. Much more involved wire configurations can be
thought of, electric fields coupling to the electric polariz-
ability of the atom (Uel = −E2/2) can be brought in as ad-
ditional design freedom [16], RF and MW fields coupling
different atomic states can be used to create adiabatic
potentials and (slowly varying) time-dependent potentials
will increase the versatility of qubit manipulation.

A first extension will be to use a three wire configu-
ration as shown in Figure 1b which allows more freedom

Fig. 6. Creation of qubit state selective micro wave potentials.
Applying a linear polarized MW detuned from the hyperfine
transition creates opposite potential shifts for the two hyperfine
manifolds. The two trappable qubit states |F = 2, mF = 1〉 and
|F = 1, mF = −1〉 of 87Rb are indicated.

in designing the double well potential for qubit coupling.
The wire in the middle can be used to control the bar-
rier either by current or by electric fields. A time varying
barrier potential height will allow techniques from quan-
tum control [17] to be applied, and we expect a significant
increase in the speed and fidelity of the quantum gate.

Encoding the qubit in different hyperfine states, like
|F = 2, mF = 1〉 and |F = 2, mF = 2〉 of 87Rb (Fig. 6),
which have different interactions with magnetic fields but
which couple equally to electric fields, will allow to use
electric fields for state dependent collisions in two qubit
operations. A combination of both magnetic and elec-
tric interactions allows to have a barrier between the
|F = 2, mF = 2〉 state, and a collisional interaction be-
tween the |F = 2, mF = 1〉 states, thus opening the possi-
bility of state-dependent dynamics. The drawback here is
that we now have to deal with field sensitive qubits. This
implies a demand for excellent magnetic field stability.

Even more versatile manipulation can be achieved
by using the adiabatic potentials created by RF and
MW fields to manipulate atoms [15]. In an atom chip set-
up such RF or MW potentials have the distinct advantage,
that one applies RF and MW near fields with a specific
well defined polarization which is given by the wire con-
figuration on the chip. At the relevant scales of the atom
chip (µm) propagation effects can be neglected and the
fields can be calculated in a quasi static approximation.

The coupling strength to the MW (RF) field is then
given by the Rabi frequency �ΩMW = −→µ · −→B MW . In
the case of large detuning (∆MW 
 ΩMW ) the adi-
abatic potential can then be calculated as UMW =
±�Ω2

MW /4∆MW . Applying linear polarized MW radia-
tion detuned from the hyperfine transition will create
opposite potential shifts for the two hyperfine manifolds.
This results in opposite sign MW potentials for two clock
states |F = 2, mF = 1〉 and |F = 1, mF = −1〉 of 87Rb.
Applying this MW field to a wire between the two trap-
ping wires (the center wire in the 3 wire configuration
of Fig. 1b) it will be possible to create state dependent
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Fig. 7. A schematic drawing an array atom chip quantum
processor. Atoms are trapped with strong transverse confine-
ment along a current carrying wire. The qubit locations are
determined by transverse crossing wires. In between are ma-
nipulation wires which allow to control the barriers between
the qubit sites.

potential barriers on the chip, which will greatly enhance
the qubit manipulation capabilities [4].

The above simple two qubit potentials and operations
can be generalized to an atom chip quantum processor
on an array of qubits. We envision such more advanced
qubit manipulation on the atom chip (Fig. 7) to consist
of an array of trappable qubits, consisting of single atoms
trapped in tight traps. The strong transverse confinement
will be created by a tight magnetic wire trap, the qubit
sites can then be determined either by electrical leads or
by crossed wires, as in the case considered here. In between
these trapping sites we will have additional wires and elec-
trodes for qubit manipulation and gate operations. these
would create the barriers for qubit coupling and qubit iso-
lation. At the end the qubit array can be read out by
transporting the atoms one by one to an integrated micro
cavity atom detector [18], reading their internal state.

7 Summary and conclusions

We have discussed new simple scheme for implementing
a phase gate on an atom chip. These schemes make use
of two degrees of freedom for each qubit. Quantum infor-
mation is stored in one degree of freedom and processed
in the other. We have discussed the feasibility of real-
izing these schemes with cold 87Rb atoms magnetically
trapped on atom chips, where the internal states are used
to storage and the external (vibrational) states to process
information, respectively. We have also investigated the
performance of such schemes in atom chip traps with re-
alistic parameter values. High fidelity gate operations are
obtainable, thus showing that micro traps on atom chips
are a very interesting candidate for quantum engineering
and quantum information processing. Our investigations

have concentrated on the most basic example of the many
potential applications of micro traps on atom chips. Some
more involved schemes are discussed as possible future de-
velopments.
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